Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers
نویسندگان
چکیده
Iridium oxide (IrO2) currently represents a state of the art electrocatalyst for anodic oxygen evolution. Since iridium is both expensive and scarce, the future practical application of this process makes it essential to reduce IrO2 loading on the anodes of PEM water electrolysers. In the present study an approach to utilising a suitable electrocatalyst support was followed. Of the materials selected from a literature review, TaC has proved to be stable under the conditions of the accelerated stability test proposed in this study. The test involved dispersing each potential support material in a mixture of trifluoromethanesulfonic acid (TFMSA) and hydrogen peroxide at 130 C. The liquid phase was subsequently analysed using ICP-MS with respect to the occurrence of ions potentially originating from the support material tested. The TaC support selected was additionally characterised by thermogravimmetric and differential thermal analysis to prove its thermal stability. A modified version of the Adams fusion method was used to deposit IrO2 on the support surface. A series of electrocatalysts was prepared with a composition of (IrO2)x(TaC)1 x, where x represents the mass fraction of IrO2 and was equal to 0.1, 0.3, 0.5, 0.7, 0.9 and 1. The thin-film method was used for electrochemical characterisation of the electrocatalysts prepared. SEMeEDX analysis, X-ray diffraction, N2 adsorption (BET) and powder conductivity measurements were used as complementary techniques to complete characterisation of the electrocatalysts prepared. The electrocatalysts with x 0.5 showed stable specific activity. This result is consistent with the conductivity measurements. Copyright a 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights
منابع مشابه
Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells
In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...
متن کاملNumerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells
In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...
متن کاملRecent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells
Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or ca...
متن کاملEfficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which...
متن کاملNickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers.
A number of nickel based materials are investigated as potential oxygen evolution catalysts under conditions close to those met in modern, high current density alkaline water electrolysers. Microelectrodes are used to avoid distortion of voltammetric data by IR drop even at the high current densities employed in such water electrolysers. High surface area nickel metal oxides prepared by cathodi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017